1213 (1972); (d) P. Dapporto, G. Fallanl, and L. Sacconl, *Inorg. Chem.*, **13**, 2847 (1974); (e) M. Aresta, C. F. Noblle, and A. Sacco, *Inorg. Chim. Acta*, **12**, 167 (1975).

(11) B. N. Flggis, and J. Lewis, Progr. Inorg. Chem., 6, 62 (1964).

(12) E. Dinjus and R. Kirmse, Z. Chem., 16, 286 (1976).

A. Gleizes, M. Dartiguenave, * Y. Dartiguenave, J. Galy

Laboratoire de Chimie de Coordination du CNRS BP 4142, 31030 Toulouse Cedex, France

H. F. Klein

Anorganisch-Chemisches Institut der Technischen Universität München, Arcisstr. 21, D-8000 Munchen 2, West Germany Received March 3, 1977

Structural Implications for Blue Protein Copper Centers from Electron Spin Resonance Spectra of Cu^{II}S₄ Chromophores¹

Sir:

Current interest in copper(II)-sulfur bonding has been stimulated by the finding of the copper(II)-sulfur (cysteine) bond being involved in the copper centers in "blue" copper proteins.² It has recently been shown³⁻⁵ that the intense blue coloration and high positive redox potentials in these proteins can be mimicked by simple inorganic compounds containing copper(II)-sulfur bonding. However, the origin of the anomalously small hyperfine (hf) coupling constants in the electron spin resonance (ESR) spectra of "blue" proteins is as yet uncertain.^{6,7} Several compounds containing copper(II)-sulfur bond(s) have been proposed as models for the "blue" copper centers, but they all show too large $|A_{\parallel}|$ and/or g_{\parallel} values.⁸⁻¹⁰ Thus, the proposed spatial disposition of ligand atoms around the "blue" copper centers varies from flattened tetrahedral,¹¹ trigonal-bipyramidal,¹² and pentacoordinated¹³ to planar.^{3,4} The diversity of these models appears to result mainly from the paucity of pertinent ESR data, especially for tetrahedral copper(II) centers containing copper(II)-sulfur bonding.

We wish to report here preliminary results from singlecrystal ESR measurements for a tetrahedral Cu^{II}S₄ center, in comparison with the ESR data for an appropriate square planar Cu^{II}S₄ center in a frozen glass. The tetrahedral Cu^{II}S₄ centers were produced by ⁶⁰Co γ -irradiation of a single crystal of tetrakis(thioacetamide)copper(I) chloride, a technique originally used for generation of copper(II) sites in a copper(I) lattice in the case of Cu(CH₃CN)4^{2+,9} All experiments were performed at liquid nitrogen temperature. The generation of two copper(II) species was observed; the angular variation of the g values of the dominant species is depicted in Figure 1. If an irradiated crystal was allowed to warm to near-ambient temperature, the resonances attributable to cupric centers disappeared, as has been observed previously for a tetrahedrally distorted Cu^{II}S₄ species.¹⁰

Our preliminary result shows that (i) the ESR spectra of the major Cu^{II}S₄ center produced by γ -irradiation can be described by $g_x = g_y = 2.027$, $g_z = 2.152$, $|A_x| = |A_y| = 24$, $|A_z| = 86.9 \times 10^{-4}$ cm⁻¹, (ii) the principal axes of the g and A tensors coincide with each other, and (iii) the z axis is parallel to the crystallographic c axis. In this tetragonal crystal the copper(I) ion is surrounded almost tetrahedrally by four sulfur atoms in S₄ symmetry, and the dihedral angle between CuS₂ planes is 84.2°.¹⁴ The crystal c axis is the direction of compression (flattening) of the CuS₄ tetrahedra. Since (i) the lowest field lines show splitting characteristic of the isotopes ⁶³Cu and ⁶⁵Cu, (ii) no ligand superhyperfine structure was observed, (iii) the principal g and A values are both small, which is expected for sulfur coordination,⁷ (iv) the symmetry, and (v) the g_{\parallel} , $|A_{\parallel}|$ data lie in the $|A_{\parallel}|$, g_{\parallel} region defined by the

Table I. Comparison of ESR Data of Copper Compounds Containing CuS₄ or Tetrahedral Coordination

Compd ^{<i>a</i>}	Core	Geom- etry ^b	g ∥ (1	$ A_{\parallel} $ $0^{-4} \mathrm{cm}^{-1}$)	Ref
$[Cu(S=C(CH_3)-NH_2)_4]^{2+}$	CuS4	t	2.152	86.9	с
Cu ²⁺ in tmtd	CuS ₄	t?	2.1253	91.9	d
Cu(SPh ₂ PNPPh ₂ S) ₂	CuS ₄	?	2.107	119	е
$(Cu:Zn)(S_2CNEt_2)_2$	CuS ₄	р	2.107	143	ſ
$[Cu(TTP)]^{2+}$	CuS_4	р	2.086	147	с
[Cu:Ni(TTP)]BF ₄	CuS ₄	р	2.087	172	g
$(Cu:Ni)(S_2P(OEt)_2)_2$	CuS ₄	р	2.0855	150.6	h
[(Cu:Ni)(i-mnt) ₂] ²⁻	CuS ₄	р	2.086	156.0	h
$(Cu:Ni)(S_2CNEt_2)_2$	CuS ₄	р	2.0856	156.2	h
[(Cu:Ni)(mnt) ₂] ²⁻	CuS ₄	р	2.0837	160.5	h
$[(Cu:Ni)(S_2C_2O_2)_2]$	CuS ₄	р	2.0805	163.9	h
$[Cu(FDT)_2]^{2-}$	CuS₄	p?	2.094	177.1	i
$[Cu(NCCH_{3})_{4}]^{2+}$	CuN ₄	t?	~2.32	~80	i
[Cu(NCS) ₄] ²⁻	CuN ₄	t	~2.43	89	ľk

^a Abbreviations: tmtd, tetramethylthiouram disulfide; i-mnt, 1,1-dicyano-2,2-dithioethylene; mnt, 1,2-dicyano-1,2-dithioethylene; FDT, fulvenedithiolate; TTP, 1,4,8,11-tetrathiacyclotetradecane. ^b t, tetrahedral; p, planar. ^c This work: the minor component has $|A_{\parallel}| = 69.4 \times 10^{-4} \text{ cm}^{-1}$, $g_{\parallel} = 2.080$. ^d Reference 19. ^e Reference 10. ^f M. J. Weeks and J. P. Fackler, *Inorg. Chem.*, **7**, 2548 (1968). ^g L. K. White and R. L. Belford, J. Am. Chem. Soc., **98**, 4428 (1976). ^h B. Malmström, B. Reinhammer, and T. Vänngård, *Biochim. Biophys. Acta*, **156**, 67 (1968); **205**, 48 (1970). J. Peisach, W. G. Levine, and W. E. Blumberg, J. Biol. Chem., **242**, 2847 (1967). ^j P. C. Savino and R. D. Bereman, *Inorg. Chem.*, **12**, 173 (1973). ^j Reference 9. ^k K. D. Forster and V. Weiss, J. Phys. Chem., **72**, 2669 (1968).

other CuS_4 centers (vide infra), these paramagnetic centers are certainly due to tetrahedral $Cu^{II}S_4$ chromophores.

Both perchlorate and tetrafluoroborate salts of the planar macrocycle^{3,4} Cu(TTP)²⁺ gave essentially the same ESR spectrum, characterized by small g_{\parallel} and moderately large $|A_{\parallel}|$ values, in line with other planar Cu^{II}S₄ moieties (TTP, 1,4,8,11-tetrathiacyclotetradecane).

Table I summarizes all the available ESR data for Cu^{II}S₄ and tetrahedrally coordinated copper(II) centers, with biologically reasonable donor atoms. An examination of Table I, coupled with the data for planar or distorted octahedral compounds,¹⁵ reveals the following salient features: (i) all of the Cu^{II}S₄ centers show small g_{\parallel} values, ~2.09 to ~2.15, (ii) the (flattened) tetrahedral coordination produces small $|A_{\parallel}|$ values, which are half or less than half of those for planar or distorted octahedral centers,¹⁵ (iii) as for CuN₄ centers,¹⁶ the g_{\parallel} values of the CuS₄ loci decrease as $|A_{\parallel}|$ increases (Figure 2, a schema of the $|A_{\parallel}|$ vs. g_{\parallel} values for CuS₄ and CuN₄ centers, reiterates the correlation^{7,10,16} between these parameters for a given set of donor atoms and shows an almost linear relationship between them).

Peisach and Blumberg⁷ have shown that positive charge on a five-atom CuX₄ core can reduce $|A_{\parallel}|$ and increase g_{\parallel} . The effect is greater for CuS₄ than for CuN₄ centers,⁷ but is less influential for nitrogen-bonded copper than is the now wellestablished effect of tetrahedral distortion on planar CuN₄ moieties,¹⁶ which is also to decrease $|A_{\parallel}|$ and increase g_{\parallel} .

The ESR results for Cu(TTP)²⁺ suggest that the charge factor alone cannot reduce $|A_{\parallel}|$ to the level observed for blue protein copper. Comparison of our data with that of Davis et al.,¹⁷ for Cu(TTP)²⁺ in the Ni-complex lattice as a planar CuS₄ unit with one weakly interacting BF₄⁻, shows in addition that the effect of axial (ligand) perturbation of the CuS₄ square is to reduce $|A_{\parallel}|$ by only 15%, as expected.¹⁸ We therefore propose that the above data enable a choice to be made in favor

Figure 1. Angular variation of g values for the major copper(II) site in a γ -irradiated Cu(thioacetamide)Cl single crystal at 77 K. Rotation about the crystal c axis (perpendicular to the applied field) denoted by the points \bullet , rotation about the axis perpendicular to the (±110) faces by the points ۸

Figure 2. Schema of g_{\parallel} vs. $|A_{\parallel}|$ for CuS₄, CuN₄, and blue protein copper centers. The CuN₄ line is based on data for pyrrole-2-aldiminate and dipyrromethenate copper(II) chelates.¹⁶ The open circles are data taken from ref 6a for blue copper proteins: 1, P. versicolor laccase; 2, 3, human ceruloplasmin components; 4, R. succedanea laccase; 5, spinach plastocyanin; 6, C. sativus, and 7, zucchini ascorbate oxidases; 8, P. aeruginosa azurin; 9, B. pertussis azurin; 10, R. vernicifera stellacyanin, and 11, laccase; 12, horseradish umecyanin; 13, cytochrome-c oxidase (from data given by F. T. Greenaway, G. Vincow, and S. H. P. Chan, the 172nd National Meeting of the American Chemical Society, San Francisco, Calif., Aug 29-Sept 3, 1976).

of a tetrahedral copper geometry in blue copper proteins, as opposed to a square-planar geometry. Further, Figure 1 suggests that the ESR parameters of blue copper centers are compatible with CuS₂N₂ or CuSN₃ coordination, although the low value of $|A_{\parallel}|$ found in such systems is not accounted for by a charge, tetrahedral distortion, or environmental effect alone. The lower symmetry associated with an N₂S₂ or N₃S donor atom set may contribute.

We note that Figure 2 corroborates the assignment of pseudotetrahedral CuS₄ coordination in Cu²⁺-doped tetramethylthiouram disulfide.19

Acknowledgment. We are indebted to Dr. S. Rettig for determining the crystallographic axes.

References and Notes

- (1) This work is a contribution from the Bioinorganic Chemistry Group, sup-ported by the National Research Council of Canada under NDG67-0015.
- E. K. Solomon, P. J. Clendening, H. B., Gray, and F. J. Grunthaner, J. Am. Chem. Soc., 97, 3878 (1975), and references cited therein. (2)
- (3) M. D. Glick, D. P. Gavel, L. L. Diaddario, and D. B. Rorabacher, Inorg. Chem., 15, 1190 (1976).
- E. R. Dockal, T. E. Jones, W. F. Sokol, R. J. Engerer, D. B. Rorabacher, and (4) L. A. Ochrymowycz, *J. Am. Chem. Soc.*, **98**, 4322 (1976). V. M. Miskowski, J. A. Thick, R. Solomon, and H. J. Schugar, *J. Am. Chem.*
- (5) Soc., 98, 8344 (1976).
- (a) J. A. Fee, Struct. Bonding, 23, 1 (1975); (b) R. Malkin and B. G. Malmström, Adv. Enzymol., 33, 177 (1970).
 J. Peisach and W. E. Blumberg, Arch. Biochem. Biophys., 165, 691 (6)
- (7) (1974).
- (8) Y. Sugiura, Y. Hirayama, H. Tanaka, and K. Ishizu, J. Am. Chem. Soc., 97, (b) From the second seco
- Soc., 98, 7266 (1976).
- (11) (a) E. I. Solomon, J. W. Hare, and H. B. Gray, Proc. Natl. Acad. Sci., U.S.A., 73, 1389 (1976); (b) O. Siiman, N. M. Young, and P. R. Carey, J. Am. Chem. Soc., 98, 744 (1976).
- (12) V. Miskowski, S.-P. W. Tang, T. G. Spiro, E. Shapiro, and T. H. Moss, Biochemistry, 14, 1244 (1975)
- (13) L. Morpurgo, A. Finnazzi-Agro, G. Rotilio, and B. Mondovi, Eur. J. Biochem., 64, 453 (1976).
- (14) M. R. Truter and K. W. Rutherford, J. Chem. Soc., 1748 (1962). (15) See, e.g., B. R. McGarvey, *Trans. Metal Chem.*, **3**, 90 (1966); G. F. Kokoszka and G. Gordon, *Technique Inorg. Chem.*, **7**, 151 (1968).
- H. Yokol and A. W. Addison, Inorg. Chem., in press. (16)
- (17) P. H. Davis, L. K. White, and R. L. Belford, Inorg. Chem. 14, 1753 (1975)
- (18) A. D. Toy, S. H. H. Chaston, J. R. Pilbrow, and T. D. Smith, Inorg. Chem., 10, 2219 (1971).
- (19) R. A. Palmer, W. C. Tennant, M. F. Dix, and A. D. Rae, J. Chem. Soc., Dalton Trans., 2345 (1976)
- (20) On leave from Hiroshima University, Japan.

U. Sakaguchi,²⁰ A. W. Addison*

Department of Chemistry, The University of British Columbia Vancouver, Canada V6T 1W5 Received February 21, 1977

Direct Stacking and Metal-Metal Interactions in Dithioacetato Palladium(II) Complexes

Sir:

Multinuclear d⁸-d¹⁰ metal ion complexes with sulfur-containing ligands are receiving considerable interest.¹ The wide variety of metal-metal interactions and of structural types which is being found in this class of compounds has important implications to topics such as the localized bonding description of the M-M interactions, the nature of the factors influencing M-M bond formation, the consequences of the M-M bond on the overall stereochemistry and electronic structure of the molecules etc.

Our present understanding of the M-M bonding in compounds of this type has been summarized by Fackler¹ recently. Previous work in the field from these laboratories has centered on nickel(II) dithiocarboxylates.^{2,3}

We have now obtained the dithioacetato derivatives of